03月28, 2019

害死人不偿命的(3n+1)猜想

卡拉兹(Callatz)猜想:

对任何一个正整数 n,如果它是偶数,那么把它砍掉一半;如果它是奇数,那么把 (3n+1) 砍掉一半。这样一直反复砍下去,最后一定在某一步得到 n=1。卡拉兹在 1950 年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很傻很天真的命题,结果闹得学生们无心学业,一心只证 (3n+1),以至于有人说这是一个阴谋,卡拉兹是在蓄意延缓美国数学界教学与科研的进展……

我们今天的题目不是证明卡拉兹猜想,而是对给定的任一不超过 1000 的正整数 n,简单地数一下,需要多少步(砍几下)才能得到 n=1?

输入格式: 每个测试输入包含 1 个测试用例,即给出正整数 n 的值。

输出格式: 输出从 n 计算到 1 需要的步数。

输入样例: 3

输出样例: 5

思路:题中猜想的实现

代码:

#include <iostream>

int count(int n) {
    int count=0;
    while(n!=1) {
        if(n%2==0){
            n=n/2;
            count++;
        }
        else
        {
            n=(3*n+1)/2;
            count++;
        }
    }
    return count;
}

int main()
{
    int x;
    cin >> x;
    cout << count(x) << endl;
    return 0;
}

本文链接:https://lyuly.com/post/patyi1001.html

-- EOF --

Comments

评论加载中...

注:如果长时间无法加载,请针对 disq.us | disquscdn.com | disqus.com 启用代理。